

Datasheet ORTUSTECH

COM50H5M81XLC

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Specifications for

Blanview TFT-LCD Monitor

Version 2.0

(Please be sure to check the specifications latest version.)

MODEL COM50H5M81XLC

Customer's Approval
Signature:
lame:
Section:
itle:
Pate:

ORTUSTECH

ORTUS TECHNOLOGY CO., LTD.

Approved by

Checked by

Prepared by

(2/56)

		SPECI	FICATIONS	S No.14TLM121	Issue: Dec. 12, 2016
Version H	istory				
			•		
Ver.	Date	Page		Description	
1.0	Jun. 19, 2015	-	-	First issue	
2.0	Dec. 12, 2016	P.8			
				3.2 Outward Form	
$\triangle \times 2$			Correct	S label sticking area	
			DRTUS	TECHNOLOGY CO.,LTD.	

Contents

1.	Applica	ation	• • • • • • • • • • • • • • • • • • • •	4
2.	Outline	Specifications		
	2.1	Features of the Product	• • • • • • • •	5
	2.2	Display Method	• • • • • • • •	5
3.	Dimen	sions and Shape		
	3.1	Dimensions	• • • • • • • • •	7
	3.2	Outward Form	• • • • • • • • •	8
	3.3	Serial Label (S-LABEL)	• • • • • • • • •	9
4.	Pin As	signment	• • • • • • • • •	10
5.	Absolu	ite Maximum Rating	• • • • • • • • • • • • • • • • • • • •	12
		nmended Operating Conditions		12
		cteristics		
	7.1	DC Characteristics		13
	7.2		• • • • • • • • • • • • • • • • • • • •	15
	7.3	Input Timing Characteristics		18
	7.4		• • • • • • • • •	19
	7.5	Example of Driving Timing Chart	• • • • • • • • •	20
8.		ption of Operation		
-	8.1	Power Supply		22
	8.2	Serial Communication		23
	8.3	Display Data Transfer		35
	8.4	Standby (Power Save) Sequence		36
	8.5	Power On Sequence		38
	8.6	Other Functions		40
9.	Circuit			. •
٥.	9.1	Driving Circuit Example(Module)		41
	0	["MODE" = "VSS"]		
	9.2	Driving Circuit Example(Module)		42
	0.2	["MODE" = "VDD"]		
	9.3	LED Circuit		43
10		cteristics		70
10.	10.1	Optical Characteristics		44
	10.2	Temperature Characteristics		45
11		a of Judgment		
		Defective Display and Screen Quality		46
	11.2	Screen and Other Appearance		47
12		ility Test		48
		ing Specifications		50
		ng Instruction		50
17.	14.1	Cautions for Handling LCD panels		51
	14.2	Precautions for Handling		52
	14.2	Precautions for Operation	• • • • • • • •	52
	14.3	Storage Condition for Shipping Cartons	• • • • • • • •	53
	14.4	Precautions for Peeling off	••••••	53
	14.5	the Protective film		33
Λ١	DDENID			E A
Αl	PPEND	I/\		54

SPECIFICATIONS No.14TLM121

1. Application

This Specification is applicable to 12.60cm (5.0 inch) Blanview TFT-LCD monitor for non-military use.

- © ORTUS TECHNOLOGY makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and ORTUS TECHNOLOGY shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains ORTUS TECHNOLOGY's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of ORTUS TECHNOLOGY'S confidential information and copy right.
- © If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult ORTUS TECHNOLOGY on such use in advance.
- This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.
- It must be noted as an mechanical design manner, especial attention in housing design to prevent arcuation/flexureor caused by stress to the LCD module shall be considered.
- ORTUS TECHNOLOGY assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.
- ORTUS TECHNOLOGY is not responsible for any nonconformities and defects that are not specified in this specifications.
- Of If any issue arises as to information provided in this Specification or any other information, ORTUS TECHNOLOGY and Purchaser shall discuss them in good faith and seek solution.
- ORTUS TECHNOLOGY assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process.

Object substance	Maximum content [ppm]
Cadmium and its compound	100
Hexavalent Chromium Compound	1000
Lead & Lead compound	1000
Mercury & Mercury compound	1000
Polybrominated biphenyl series (PBB series)	1000
Polybrominated biphenyl ether series (PBDE series)	1000

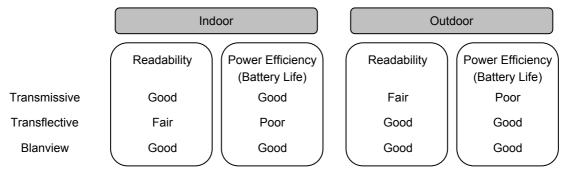
SPECIFICATIONS No.14TLM121

2. Outline Specifications

2.1 Features of the Product

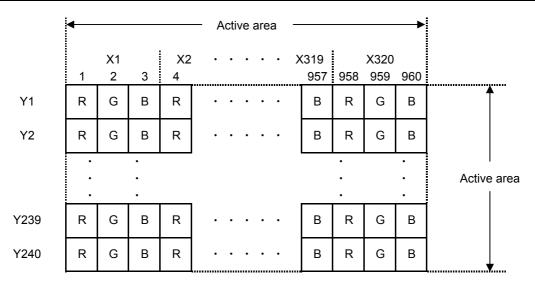
- 5.0 inch diagonal display, 960 [H] x 240 [V] dots.
- Two kinds of input specifications can be selected.
- -"MODE" = "VSS"

8-bit / 16,777,216 colors.


Various display controls and functional selection by 3-wire serial communication method.

-"MODE" = "VDD"

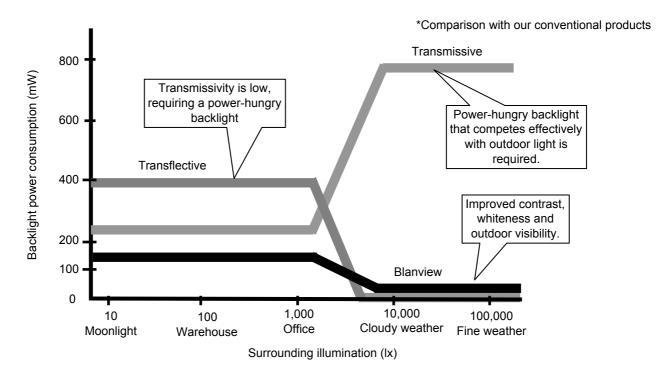
6-bit / 262,144 colors.


Various display controls and functional selection by terminal control.

- 3.0V voltage single power source.
- Timing generator [TG], Counter-electrode driving circuitry, Built-in power supply circuit.
- Power save (Standby) mode capable.
- Built-in rush current reduction circuit.
- Built-in panel residual charge reduction circuit.
- Long life & High bright white LED back-light.
- Blanview TFT-LCD, improved outdoor readability.

2.2 Display Method

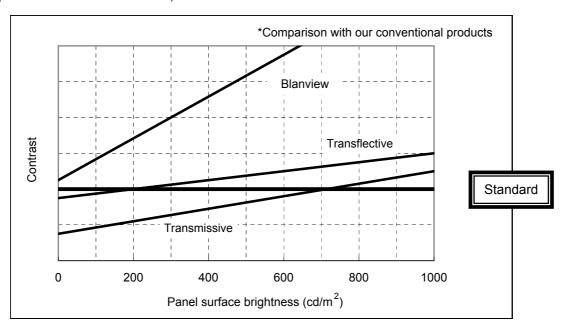
Items	Specifications	Remarks
Display type	TN type 262,144 colors or 16,777,216 colors.	
	Blanview, Normally white.	
Driving method	a-Si TFT Active matrix.	
	Line-scanning, Non-interlace.	
Dot arrangement	RGB stripe arrangement.	Refer to "Dot arrangement"
Signal input method	6-bit or 8-bit RGB,parallel input.	
Backlight type	Long life & High bright white LED.	


Dot arrangement (FPC cable placed down)

SPECIFICATIONS No.14TLM121

Issue: Dec. 12, 2016

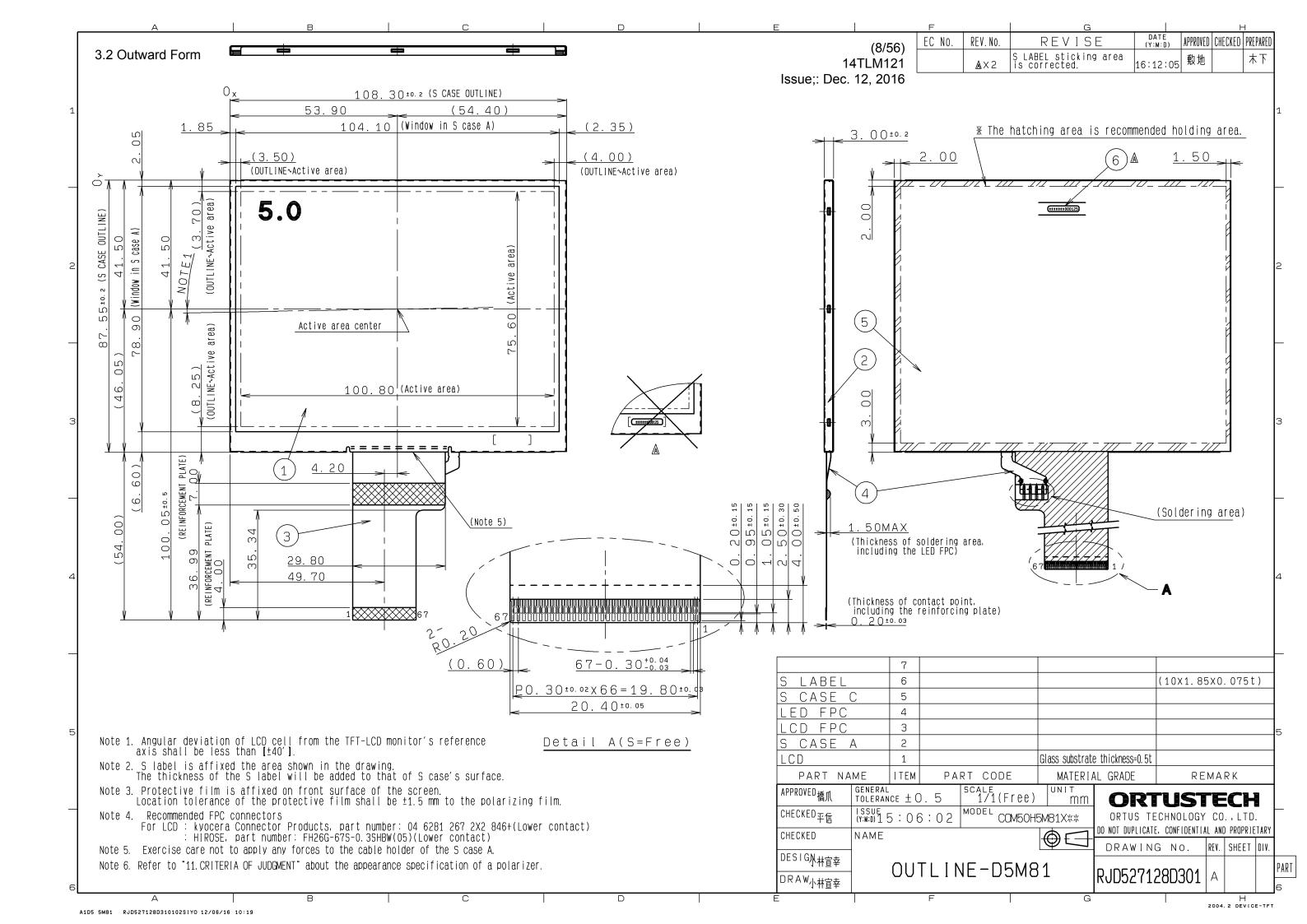
<Features of Blanview>


- Backlight power consumption required to assure visibility. (equivalent to 3.5"QVGA)

- Contrast characteristics under 100,000lx. (same condition as direct sunlight.)

With better contrast (higher contrast ratio), Blanview TFT-LCD has the best outdoor readability in three different types of TFT-LCD.

Below chart shows contrast value against panel surface brightness. (Horizontal: Panel surface brightness/ Vertical: Contrast value) LCD panel has enough outdoor readability above our Standard line. (ORTUS TECHNOLOGY criteria)



SPECIFICATIONS No.14TLM121

3. Dimensions and Shape

3.1 Dimensions

Items	Specifications	Unit	Remarks
Outline dimensions	108.30[H] × 87.55[V] × 3.00[D]	mm	Exclude FPC cable
Active area	100.80[H] × 75.60[V]	mm	12.60cm diagonal
Number of dots	960[H] × 240[V]	dot	
Dot pitch	105.0[H] × 315.0[V]	μm	
Surface hardness of the polarizer	3	Н	Load:2.0N
Weight	60.5	g	Include FPC cable

3.3 Serial Label (S-LABEL)

1) Display Items

S-label indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

* Contents of Display

*	*	****	*****
_	-		
а	b	С	d

	Contents of display						
а	The least significant	digit of manufacture ye	ar				
b	Manufacture month Jan-A May-E Sep-I						
		Feb-B	Jun-F	Oct-J			
		Mar-C	Jul-G	Nov-K			
		Apr-D	Aug-H	Dec-L			
С	Model code 50BHC (Made in Japan) 50BJC (Made in Malaysia)						
d	Serial number						

- * Example of indication of Serial label (S-label)
- ·Made in Japan

5K50BHC000125

means "manufactured in November 2015, 5.0" BH type, C specifications, serial number 000125"

·Made in Malaysia

5K50BJC000125

means "manufactured in November 2015, 5.0" BJ type, C specifications, serial number 000125"

2) Location of Serial Label (S-label) Refer to 3.2 "Outward Form".

SPECIFICATIONS No.14TLM121

4. Pin Assignment

No.	Symbol	Function						
		MODE(No.34pin) = "VSS"	MODE(No.34pin) = "VDD"					
1	VCOM	Common-electrode driving signal.	, , ,					
2	D27	Display data input for (B).	Display data input for (B).					
3	D26	00h for black display	00h for black display					
4	D25	D20:LSB D27:MSB	D22:LSB D27:MSB					
5	D24		Driver IC carries out gamma conversion					
6	D23	Driver IC carries out gamma conversion	internally.					
7	D22	internally.						
8	D21	,	Short to VSS.					
9	D20		Short to VSS.					
10	D17	Display data input for (G).	Display data input for (G).					
11	D16	00h for black display	00h for black display					
12	D15	D10:LSB D17:MSB	D12:LSB D17:MSB					
13	D14	510.E05 517.M05	Driver IC carries out gamma conversion					
14	D13	Driver IC carries out gamma conversion	internally.					
15	D13	internally.	internally.					
16	D12	internally.	Short to VSS.					
17	D10		Short to VSS.					
18	D10	Display data input for (R).	Display data input for (R).					
19	D07	00h for black display	00h for black display					
20	D05	D00:LSB D07:MSB	D02:LSB D07:MSB					
	D03	DOU.LSB DUT.WISB						
21		Deiter 10 comics and account	Driver IC carries out gamma conversion					
22	D03	Driver IC carries out gamma conversion	internally.					
23	D02	internally.	06					
24	D01	ŀ	Short to VSS.					
25	D00		Short to VSS.					
26	BLON	Logic signal output for external backlight circuitry.	OPEN.					
27	CS/STBY	CS:Chip select input for serial communication.	STBY:Stanby signal.					
00	DUDE	(Lo: active)	(Lo:Normal operation, Hi:Stanby operation)					
28	DI/DE	DI:Data input for serial communication.	DE:Input data effective signal.					
29	SCK/REV	SCK:Clock input for serial communication.	REV:Right/Left & Up/Down Display reverse.					
	\ (0\ (1) C	V 6 1 1 1 1	(Lo:Normal Display,Hi:Reverse Display)					
30	VSYNC	Vertical sync signal input.	Vertical sync signal input.(negative polarity)					
31	HSYNC	Horizontal sync signal input.	Horizontal sync signal input.(negative polarity)					
32	CLK	Clock input for display.	Clock input for display.					
33	VSS	GND.						
34	MODE	Input specification selection input.						
35	POCB	Power on clear. (Lo: active)						
36	NC	OPEN.						
37	RVDD	Internal power supply.						
38	COMDC	Common-electrode drive DC output.						
39	NC	OPEN.						
40	VSREF	Built-in DAC reference supply.						
41	C1P	Contacting terminal of capacitor for charge pump.						
42	C1M	Contacting terminal of capacitor for charge pump.						
43	C2M	Contacting terminal of capacitor for charge pump.						
44	C2P	Contacting terminal of capacitor for charge pump.						
45	VDD	Power supply input.						

- Recommended connector : KYOCERA CONNECTOR PRODUCTS 6281 series [04 6281 267 2x2 846+] : HIROSE ELECTRIC CO.,LTD. FH26 series [FH26G-67S-0.3SHBW(05)]
- Please refer to the section "3.2 Outward Form" for terminal order.

OPEN.

OPEN.

64

65 66

67

NC

NC

BLH1

BLL1

- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.

LED drive power source 1. (Anode side)

LED drive power source 1. (Cathode side)

SPECIFICATIONS No.14TLM121

5. Absolute Maximum Rating

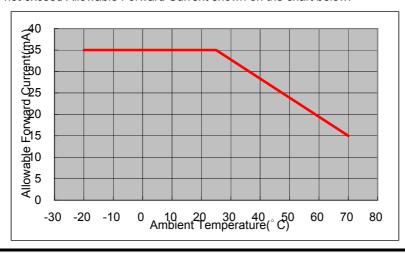
VSS=0V

Item	Symbol	Condition	Ra	ting	Unit	Applicable terminal
			MIN	MAX]	
Supply voltage	VDD	Ta=25° C	-0.3	6.0	V	VDD
Input voltage 1 for logic	VI1]	-0.3	VDD+0.3	V	POCB,CLK,VSYNC,HSYNC,
						D[27:20],D[17:10,D[07:00],
						MODE
Input voltage 2 for logic	VI2	1	-0.3	6.0	V	CS/STBY,DI/DE,SCK/REV
LED forward current	IL	Ta = 25° C		35	mA	BLH1 - BLL1
		Ta = 70° C		15		BLH2 - BLL2
Storage temperature range	Tstg		-30	80	°C	
Storage humidity range	Hstg	Non condensing in an environmental moisture at or less than 40 ° C90%RH.				

Note: Please set "Power-on" and "Power-off" sequences in accordance with the "standby sequence" described later.

6. Recommended Operating Conditions

VSS=0V


Item	Symbol	Condition		Rating			Applicable terminal
			MIN	TYP	MAX		
Supply voltage	VDD		2.7	3.0	3.6	V	VDD
Input voltage 1 for logic	VI1	VDD=2.7~3.6V	0		VDD	V	POCB,CLK,VSYNC, HSYNC,D[27:20], D[17:10],D[07:00], MODE
Input voltage 2 for logic	VI2		0		VDD	V	CS/STBY,DI/DE, SCK/REV
Common-electrode center voltage Note1		MODE="VSS" VCOMDC[5:0] =08h~3Ah	1.20	1.70	2.20	V	COMDC
		MODE="VDD"	1.20	1.70	2.20	V	
Operational temperature range	Тор	Note2,3	-20	25	70	°C	Panel surface temperature
Operating humidity range	Нор	Ta≦30° C Ta>30° C	20 Non conde	 nsing in	80	%	
			an environmental moisture at or less than 30° C80%RH.				

Note1: Common-electrode center voltage indicates that optimum VCOMDC value lies within the bound of these voltages, but it does not mean that the whole range of voltages are the optimum VCOMDC value.

This product must to be used with optimized VCOMDC value.

Note 2: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 10."CHARACTERISTICS".

Note 3: Acceptable Forward Current to LED is up to 15mA, when Ta=+70 °C. Do not exceed Allowable Forward Current shown on the chart below.

SPECIFICATIONS No.14TLM121

7. Characteristics

7.1 DC Characteristics

7.1.1 Display Module

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

Item	Symbol	Condition		Rating	,	Unit	Applicable terminal
			MIN	TYP	MAX		
Schmitt	VP	VDD=2.7~3.6V	0.47×VDD	0.60×VDD	0.73×VDD	V	CS/STBY,DI/DE,
Threshold							SCK/REV,VSYNC,
voltage	VN		0.30×VDD	0.43×VDD	0.56×VDD	V	HSYNC,D[27:20],
							D[17:10],D[07:00],
	VH		0.08×VDD	0.17×VDD	0.27×VDD	V	CLK,POCB
Input Signal	VIH		0.7×VDD		VDD	V	MODE
Voltage	VIL		0		0.3×VDD	V	
Pull up resister value	Rpu		45	91	182	kΩ	POCB
Pull down resister value	Rpd		45	91	182	kΩ	MODE
Output Voltage1	VDD2		4.8	5.6	6.1	٧	VDD2
Output Voltage2	VGH		12.5	13.3	13.5	V	VGH
Output Voltage3	VGL		-13.5	-13.3	-12.5	V	VGL
Output	VOH	lo = -1.0mA	VDD - 0.5		VDD	V	BLON
Voltage4	VOL	Io = 1.0mA	0		0.5	٧	
Operating Current	IDD	fCLK=6.75MHz Color bar display BRIGHT[5:0],CONTRAST[3:0] = Initial value		9.5	19.0	mA	VDD
Standby Current	IDDs	MODE="VSS",Other input with constant voltage.		11.0	30.0	μΑ	VDD
		MODE="VDD",Other input with constant voltage.		44.0	96.0	μA	

At "MODE" = "VSS"

(Unless otherwise noted, Ta=25 °C,VDD=3.0V,VSS=0V)

Item	Symbol	Condition		Rating			Applicable terminal
			MIN	TYP	MAX		
VcomDC	VCOMDC	VCOMDC[5:0]=00h	0.94	1.04	1.14		COMDC
Adjusted value		VCOMDC[5:0]=1Fh	1.56	1.66	1.76	V	
		VCOMDC[5:0]=3Ch	2.14	2.24	2.34		

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

Item	Symbol	Condition			Rating		Unit
				MIN	TYP	MAX	
BRIGHT	VLCD	BRIGHT[5:0]=00h	D[*7:*0]=00h	4.10	4.25	4.40	
Adjusted value		CONTRAST[3:0]=Eh D[*7:*0]=FFh		0.92	1.07	1.22	
		BRIGHT[5:0]=1Ah D[*7:*0]=00h		3.58	3.73	3.88	V
		CONTRAST[3:0]=Eh D[*7:*0]=FFh		0.40	0.55	0.70	
		BRIGHT[5:0]=2Eh	3.18	3.33	3.48		
		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.00	0.15	0.30	
CONTRAST	VLCD	CONTRAST[3:0]=0h		1.35	1.50	1.65	
Adjusted value		VLCD(D[*7:*0]=00h)-VLCD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Eh		3.03	3.18	3.33	V
		VLCD(D[*7:*0]=00h)-VLCD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Fh		3.15	3.30	3.45	1
		VLCD(D[*7:*0]=00h)-VLCD(D[*7:*0]=FFh)				

SPECIFICATIONS No.14TLM121

7.1.2 Backlight

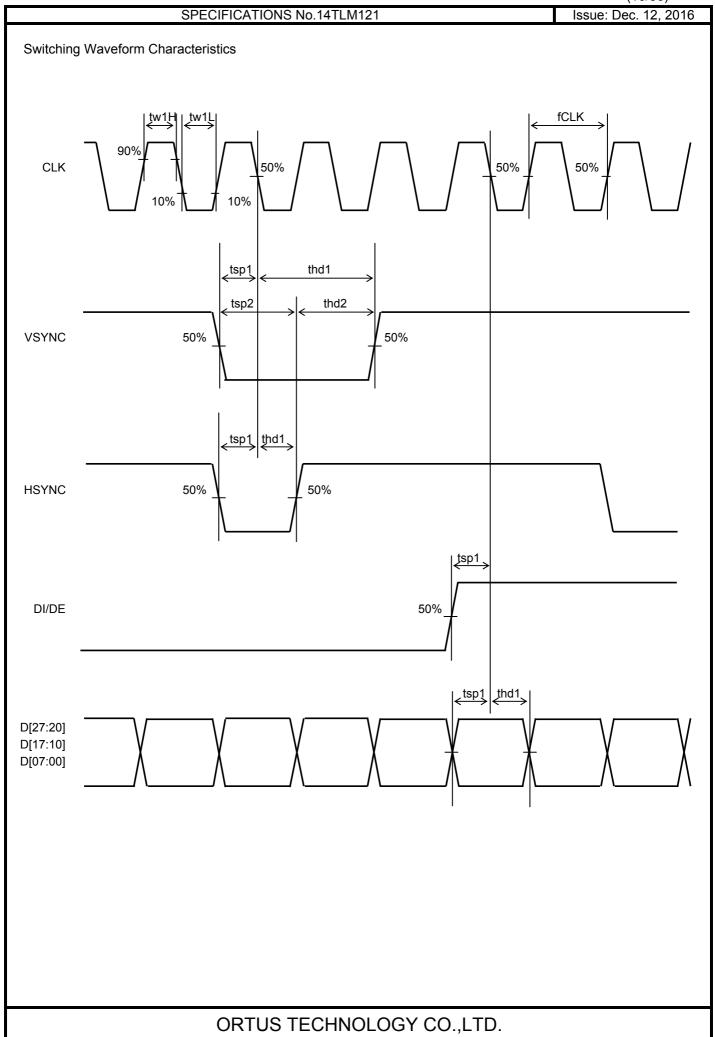
Item	Symbol	Condition	Rating			Unit	Applicable terminal
			MIN	TYP	MAX		
Forward current	IL25	Ta=25° C		7.1	35.0	mA	BLH1 — BLL1
	IL70	Ta=70° C			15.0	mA	BLH2 — BLL2
Forward voltage	VL	Ta=25° C, IL=7.1mA		16.0	16.8	V	
Estimated Life	LL	Ta=25° C, IL=7.1mA		(50,000)		hr	
of LED		Note					

Note: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

- This figure is given as a reference purpose only, and not as a guarantee.
- This figure is estimated for an LED operating alone.
 As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.
- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

SPECIFICATIONS No.14TLM121

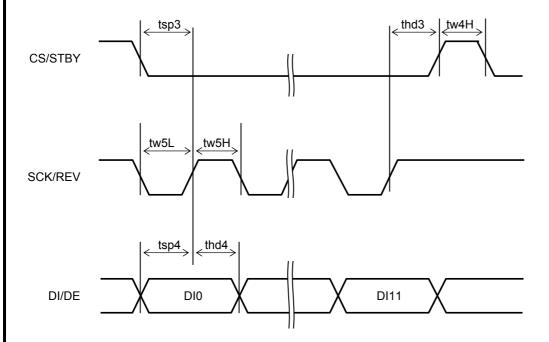
7.2 AC Characteristics


7.2.1 Display Module

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
CLK Low period	tw1L	0.1×VDD or less	20			ns	CLK
CLK High period	tw1H	0.9×VDD or more	20			ns	
Setup time 1	tsp1		10			ns	CLK,HSYNC,VSYNC
Hold time 1	thd1		10			ns	D[27:20],D[17:10],
							D[07:00],DI/DE Note
Setup time 2	tsp2		2			CLK	VSYNC,HSYNC
Hold time 2	thd2		2			CLK	
CLK frequency	fCLK			6.75	9.0	MHz	CLK

Note: The Rating value of the terminal DI/DE is effective at "MODE" = "VDD".


(16/56)

7.2.2 Serial Communication Block(at "MODE" = "VSS")

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

				(0000 040		,	0,100 0.01,100 01)
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
CS setup time	tsp3		20			ns	CS/STBY
CS hold time	thd3		20			ns	CS/STBY
DI setup time	tsp4		20			ns	DI/DE
DI hold time	thd4		20			ns	DI/DE
CS pulse High period	tw4H		20			ns	CS/STBY
SCK pulse Low period	tw5L		20			ns	SCK/REV
SCK pulse High period	tw5H		20		-	ns	SCK/REV

Note: Unless otherwise noted, each item is defined between each 50 % point of signal amplitude.

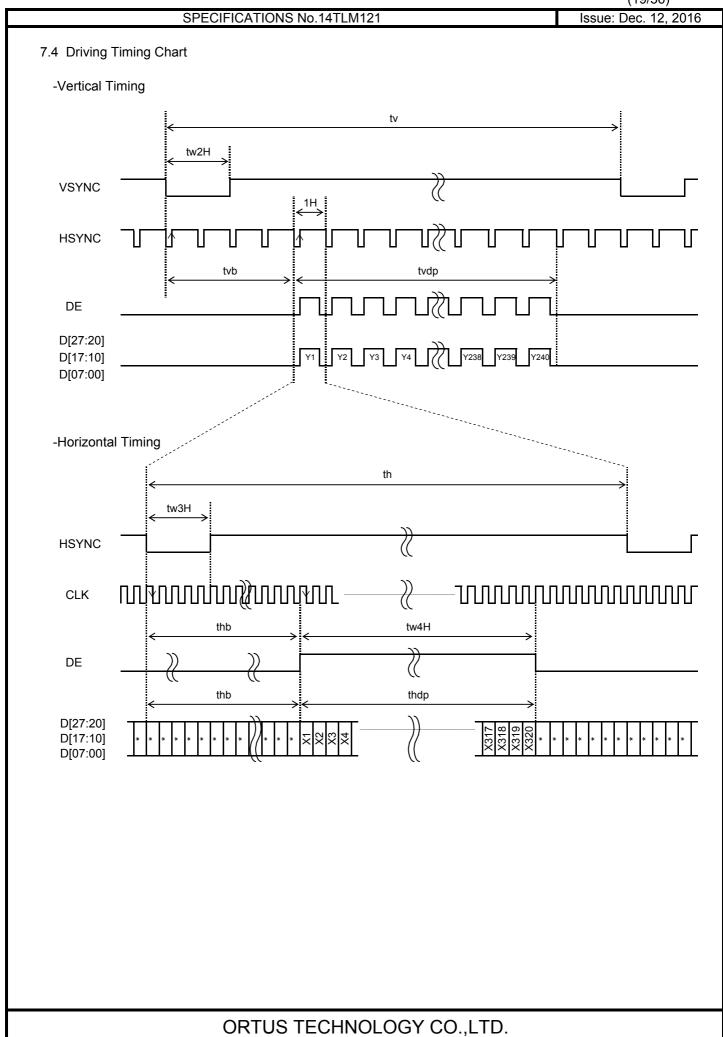
7.3 Input Timing Characteristics

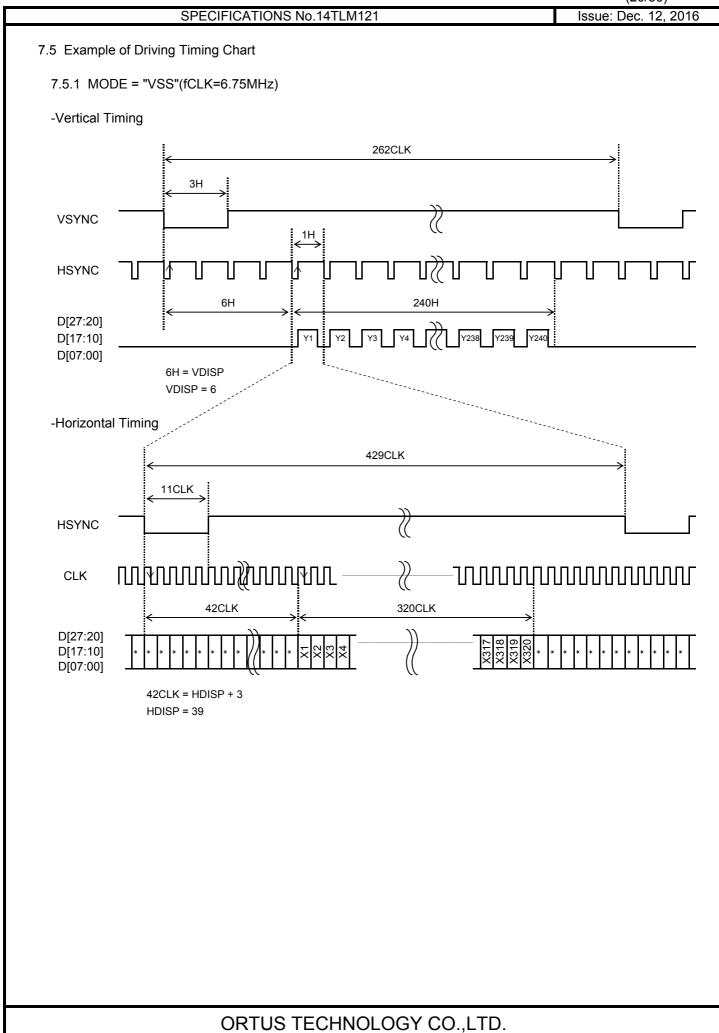
7.3.1 MODE = "VSS"

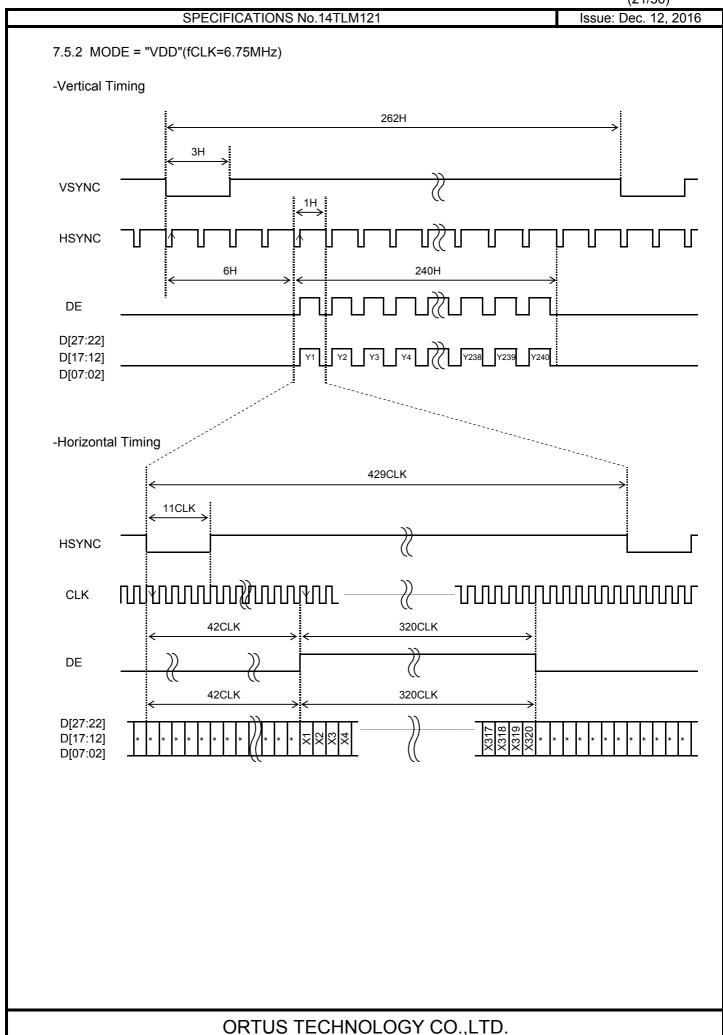
Item	Symbol		Rating		Unit	Applicable terminal
		MIN	TYP	MAX		
CLK frequency	fCLK		6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv		262	291	Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	3H	-		CLK,VSYNC
Vertical Back Porch	tvb	0 Note2	6	31	Н	VSYNC,HSYNC,D[27:20],
Vertical Display Period	tvdp		240	1	Н	D[17:10],D[07:00]
HSYNC frequency	fHSYNC		15.7	-	kHz	HSYNC
HSYNC Cycle	th		429	573	CLK	CLK,HSYNC
HSYNC Pulse Width	tw3H	2CLK		20µs		
Horizontal Back Porch	thb	5	42	-	CLK	CLK,HSYNC,D[27:20],
						D[17:10],D[07:00]
Horizontal Display Period	thdp		320	-	CLK	CLK,D[27:20],D[17:10],D[07:00]

Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency.

Note2: When Vertical Back Porch is "0", please use odd number for the setting of the total number of lines that compose one field.


7.3.2 MODE = "VDD"

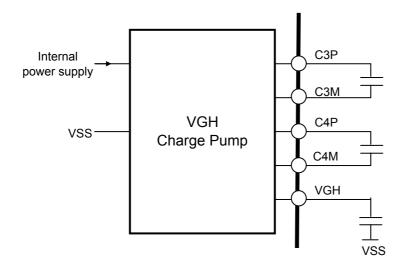

Item	Symbol		Rating		Unit	Applicable terminal
		MIN	TYP	MAX		
CLK frequency	fCLK		6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv		262	291	Η	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	3H			CLK,VSYNC
Vertical Back Porch	tvb	0 Note2	6	21 Note3	Η	VSYNC,HSYNC,DE,D[27:22],
Vertical Display Period	tvdp		240		Η	D[17:12],D[07:02]
HSYNC frequency	fHSYNC		15.7		kHz	HSYNC
HSYNC Cycle	th		429	573	CLK	CLK,HSYNC
HSYNC Pulse Width	tw3H	2CLK	-	20µs		
Horizontal Back Porch	thb	5	42	77 Note3	CLK	CLK,HSYNC,DE,D[27:22],
						D[17:12],D[07:02]
DE Pulse Width	tw4H		320		CLK	CLK,DE
Horizontal Display Period	thdp		320		CLK	CLK,D[27:20],D[17:10],D[07:00]


Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency.

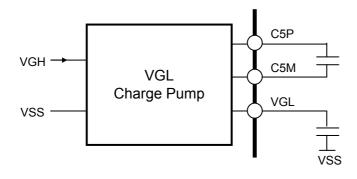
Note2: When Vertical Back Porch is "0", please use odd number for the setting of the total number of lines that compose one field.

Note3: When DE keeps "Lo" for 21H and 77CLK or longer, start capturing data automatically from "22H and 78CLK".





SPECIFICATIONS No.14TLM121 Issue: Dec. 12, 2016

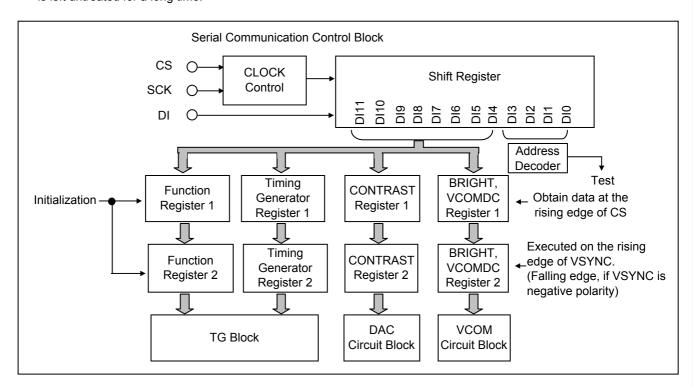

- 8. Description of Operation
 - 8.1 Power Supply
 - 8.1.1 VDD2 Charge Pump

8.1.2 VGH Charge Pump

8.1.3 VGL Charge pump

Please use ceramic capacitors with B property for external capacitors

8.2 Serial Communication


Serial communication control block in the LCD monitor is described below. Serial communication control function is effective at "MODE" = "VSS".

8.2.1 Feature Description

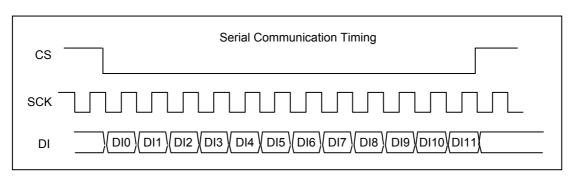
Serial communication control block is consist of registers that store data entered from CS, SCK, DI terminals and DAC that outputs control voltages to each part according to the data loaded from these registers .

All registers are set to initial values at power-on.

Electrostatics or noises may re-set the registers to improper values. It is advisable to set up serial communication as frequently as possible as liquid crystal could degrade if such state is left untreated for a long time.

8.2.2 Serial Communication Timing

After input signal of CS drops from Hi to Lo, the Shift Resister loads 12 bits of serial data from DI at the rising edge of the input signal of SCK.


Mode register and DAC register load the stored data at the rising edge of the input signal of CS.

When loaded DI data during the low period of CS is less than 12 bits, all loaded data are discarded .

When loaded DI data during the low period of CS is 12 bits or more, the last read of 12 bits is used .

Each command is executed by VSYNC immediately after the rising the edge of CS.

Serial Communication Control Block is configurable at any time during display and standby mode as it is completely independent from other circuitry run by CLK in the monitor.

SPECIFICATIONS No.14TLM121

8.2.3 Serial Communication Data

Configuration of serial data for DI terminal

First Last LSB MSB DI0 DI3 DI5 DI6 DI2 DI4 DI7 DI8 DI9 DI10 DI11 Register address Data

LSB MSB LSB MSB

						LSB							MSB	LOD							MSB
Register		Add	ress		Number of			F	rese	t valu	е					Use	er sett	ing v	alue		
	DI0	DI1	DI2	DI3	bits for data	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
BRIGHT	0	0	0	0	6 (DI6-DI11)	-	-	0	1	0	1	1	0	-	-		Į	Jser	settin	g	
VCOMDC	1	0	0	0	6 (DI6-DI11)	-	-	1	1	1	1	1	1	-	-	Optir	num	settin	g for	each	1
																				mo	onitor
CONTRAST	0	1	0	0	4 (DI4-DI7)	0	1	1	1	-	-	-	-	Ų	Jser :	settin	g	-	-	-	-
PANEL1					3 (DI9-DI11)	-	-	ı	ı	-	0	0	1	-	·	-	-	-	0	0	1
VDISP	1	1	0	0	5 (DI4-DI8)	1	0	1	0	1	-	-	-		Use	er set	ting		-	-	-
PANEL2					3 (DI9-DI11)	•	-	1	-	-	0	0	0	-	•	-	-	-	0	0	0
HDISP	0	0	1	0	8 (DI4-DI11)	0	1	0	1	0	0	1	0		User setting						
PANEL3	1	0	1	0	8 (DI4-DI11)	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0
FUNC1	0	1	1	0	8 (DI4-DI11)	0	0	0	1	0	0	0	0	0	Į	Jser s	settin	9	0	0	0
FUNC2	1	1	1	0	8 (DI4-DI11)	1	1	1	1	0	0	0	0	Use	er set	ting	1	0	0	-	-
FUNC3	0	0	0	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0		l	Jser	settin	g	
FUNC4	1	0	0	1	8 (DI4-DI11)	1	0	0	0	0	0	0	0	1			Use	er set	ting		
PANEL4	0	1	0	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL5	1	1	0	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
PANEL6	0	0	1	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL7	1	0	1	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL8	0	1	1	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL9	1	1	1	1	8 (DI4-DI11)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Configuration of FUNC1 Register

bit	Function	Description
DI4	TEST 0	Please fix it to "0".
DI5	Vertical flip display	Flip image vertically (from top to bottom). 0: Normal, 1: Vertical flip
DI6	Horizontal flip display	Flip image horizontally (from side to side). 0: Normal, 1: Horizontally flip
DI7	Backlight control	Set BLON signal that controls external backlight circuitry. 0: Low 1: High
DI8	Standby control	Switch between standby and operation. 0: standby, 1: operation
DI9	TEST 1	
DI10	TEST 2	Please fix it to "0".
DI11	TEST 3	

Configuration of FUNC2 Register

bit	Function	Desc	cription
DI4	HSYNC polarity	Change polarity of HSYNC. 0: Positive pol	larity, 1: Negative polarity
DI5	VSYNC polarity	Change polarity of VSYNC. 0: Positive pol	larity, 1: Negative polarity
DI6	CLK polarity	Change polarity of CLK. 0: Noninversion	on 1: Inversion
DI7	TEST 4	Please fix to "1".	
DI8	TEST 5	Please fix it to "0".	
DI9	TEST 6		
DI10	Unused	-	
DI11	Unused		

SPECIFICATIONS No.14TLM121

Configuration of FUNC3 Register

bit	Function	Description
DI4	Test 7	Please fix it to "0".
DI5	Test 8	
DI6	GM1[0]	Register for gamma potential correction when input data D [*7:*0] is 192(=C0h).
DI7	GM1[1]	
DI8	GM1[2]	
DI9	GM2[0]	Register for gamma potential correction when input data D[*7:*0] is 148(=94h).
DI10	GM2[1]	
DI11	GM2[2]	

Configuration of FUNC4 Register

bit	Function	Description
DI4	Test 9	Please fix to "1".
DI5	Select gamma	Select gamma correction curves. 0: built-in gamma correction curve
	correction curve	1: user-established gamma correction curve
DI6	GM3[0]	Register for gamma potential correction when input data D [*7:*0] is 108(=6Ch).
DI7	GM3[1]	
DI8	GM3[2]	
DI9	GM4[0]	Register for gamma potential correction when input data D[*7:*0] is 64(=40h).
DI10	GM4[1]	
DI11	GM4[2]	

-TEST 0 to TEST 9

Please fix DI4, DI9 through DI11 of the FUNC1 registers to "0".

Please fix DI7 of FUNC2 to "1", DI8 and DI9 of FUNC2 to "0". DI10 and DI11 are no connection.

Please fix DI4 and DI5 of FUNC3 to "0".

Please fix DI4 of FUNC4 to"1".

-User Setting Values

Please use "User setting values" to set up PANEL1 through PANEL9, DI4, DI9 through DI11 of FUNC1, DI7 through DI9 of FUNC2, DI4, DI5 of FUNC3 and DI4 of FUNC4.

Use of unspecified values may cause malfunction.

SPECIFICATIONS No.14TLM121

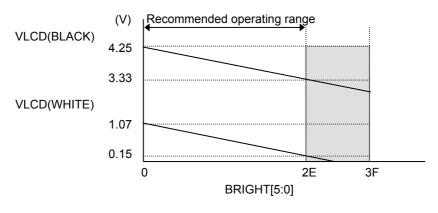
8.2.4 Detailed Description of Function

(1) Bright Control (BRIGHT)

Bright setting values is controlled by 6 bit (DI6 through DI1) of BRIGHT registers.

The display lightens in proportion to data value while VLCD changes inversely with the data value. Initial value of BLACK[00h] is 3.73V and WHITE[FFh] is 0.55V

illular value of BLACK[0011] is 3.73V and WHITE[FF


when the CONTRAST register is Eh.

The amount of change in VLCD is 0.02V per LSB.

Recommended Operating Range
The register shall be set in 00h to 2Eh range.

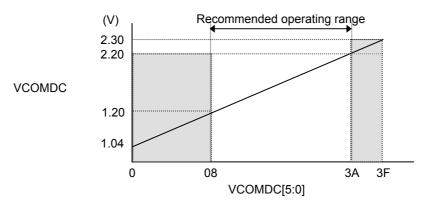
		(Typ.)
BRIGHT[5:0]	VLCD(BLACK)	VLCD(WHITE)
00h	4.25V	1.07V
01h	4.23V	1.05V
~	~	~
1Ah	3.73V	0.55V
~	~	~
2Dh	3.35V	0.17V
2Eh	3.33V	0.15V

Recommended operating range

(2) Common Electrode Center Voltage (VCOMDC)

Common-electrode center voltage is controlled by 6-bit (DI6 through DI11).

The voltage is proportional to data values. Each TFT monitor has to be optimized to its own optimum value separately. This optimization is mandatory. If not implemented, liquid crystal of TFT monitor will be degraded by long operation.


Initial value of VCOMDC is 2.30V.

in 08h to 3Ah range.

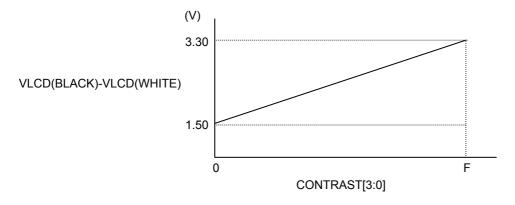
Amount of change in VCOMDC is 0.02V per LSB.

Recommended Operating Range Since VCOMDC has its optimum value somewhere between 1.20V and 2.20V, the register should be set

VCOMDC[5:0] VCOMDC (V)	
00h 1.04V	
~ ~	
07h 1.18V	
08h 1.20V ↑	
~ ~ Recommende	d
3Ah 2.20V ↓operating rang	је
~ ~	
3Fh 2.30V	

(3) Contrast Control (CONTRAST)

Contrast is controlled in 16 levels by 4-bit (DI4 through DI7) CONTRAST register.


Contrast is proportional to data values.

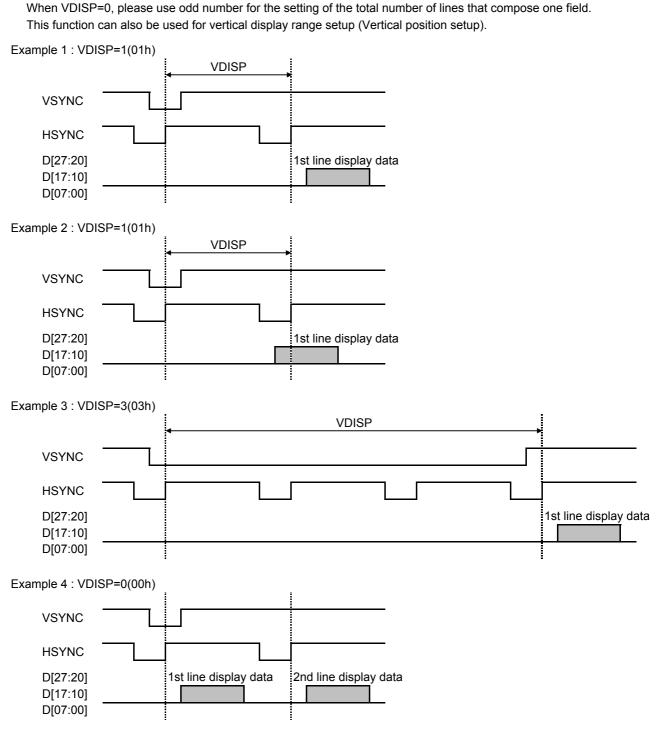
Contrast does not affect aforementioned bright control.

Initial value of Contrast is 3.18V.

Amount of change in contrast is 0.12V per LSB.

	(Typ.)
CONTRAST[3:0]	VLCD(BLACK)-VLCD(WHITE)
0h	1.50V
~	~
Eh	3.18V
Fh	3.30V

(4) Panel Setting 1 (PANEL 1)


PANEL 1 register 3-bit (DI9 and DI11) can select operating conditions from 8 choices. Please set this register to these values.

DI9	DI10	DI11
0	0	1

(5) Vertical Flyback Time Set (VDISP)

The length of vertical fly back period can be set from 0 to 31H by 5-bit of DI4 through DI8 of VDISP register. When VSYNC and HSYNC are negative polarity, "Lo" period of VSYNC is detected at the rising edge of HSYNC. The setting value of VDISP is determined by the number of horizontal periods from the first detection of VSYNC=Lo to the first line's display data input.Please set VDISP=1 as shown in "Example 1" even if the display data of the first line is input

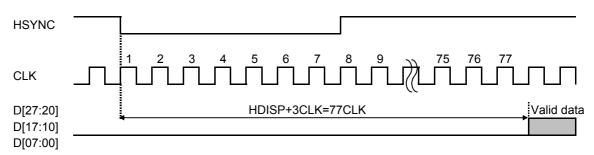
When the pulse width of VSYNC extends over two or more H as shown in "Example 3", the setting value is determined by the number of horizontal periods from the first detection of VSYNC=Lo to the first line's display data input. When the initial value is "0", the first line's display data needs to be inputted immediately after VSYNC as shown in "Example 4".

(6) Panel Setting 2 (PANEL2)

PANEL 2 register 3-bit (DI9 and DI11) can select operating conditions from 8 choices. Please set this register to these values.

DI9	DI10	DI11
0	0	0

(7) Horizontal Flyback Period Setting (HDISP)


Horizontal flyback time can be set from 5 to 258CLK by HDISP register with 8-bit of DI14 thru DI11.

However, set value of 0 or 1 is prohibited. Actual flyback time is "setting value plus 3CLK".

When initial value is 74, a data after a lapse of 74 + 3CLK=77CLK from the rising edge of HSYNC is displayed as shown in the following chart.

This function can also be used for horizontal display range setup (Horizontal position setup).

Example: HDISP=74(4Ah)

(8) Panel Setting 3 (PANEL3)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 3 register.

Please set this register to these values.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	1	0	0	1	1	0	0

(9) Function Set 1 (FUNC1)

FUNC1 register sets and controls the following functions by its each bit of DI5,DI6,DI7 and di8.

- Vertical Flip Display (Up/Down)

DI5=0 for normal display, DI5=1 for vertical flip display

After completing the setup by serial communication, the selected display mode is carried out by VSYNC. (Normal display is defined when FPC of the monitor is place downside.)

- Horizontal Flip Display (Right/Left)

DI6=0 for normal display, DI6=1 for horizontal flip display

The selected display mode is executed at VSYNC after setup by serial communication.

(Please refer to the section 8.3 for Display Data Transfer)

- Backlight Control

DI7 switches the backlight driver IC. BLON terminal outputs set value of DI7.

Since its output level is VDD or VSS, this function can also be used for other controls than the backlight. After completing the setup by serial communication, the selected display mode is carried out by VSYNC.

- Standby Mode

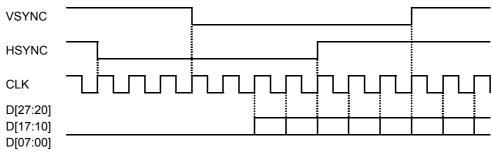
DI8=0 for standby mode, DI8=1 for normal operation

Since default value of DI8 after power on is "0", it automatically goes to standby mode.

Power consumption is significantly reduced in standby mode by disabling the timing generator and the LCD driving circuitry, and disconnecting current lines.

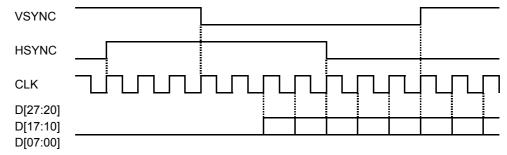
No image is displayed (white raster display) during standby mode unless DI8 is set to 1 for normal operation by serial communication. Serial data can be received by serial communication block even in standby mode.

Please refer to the section 8.4 "Standby (Power save) Sequence" for standby mode and power on/off sequence.

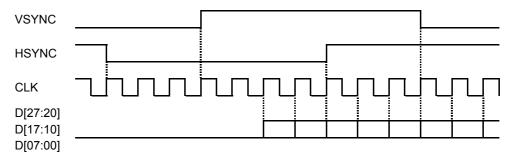

When normal operation is switched to standby mode, afterimage treatment is carried out before switching to standby mode.

(10) Function Set 2 (FUNC2)

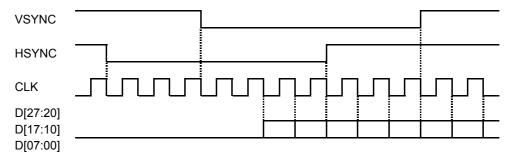
FUNC2 register sets and controls the following functions by its each bit of DI4 thru DI6.


HSYNC,VSYNC,CLK Polarity Switching
 Polarity of HSYNG is switched by DI4. DI4=0 for positive polarity input, DI4=1 for negative polarity input.
 Polarity of VSYNC is switched by DI5. DI5=0 for positive polarity input, DI5=1 for negative polarity input.
 Polarity of CLK is switched by DI6. DI6=0 for non-inversion, DI6=1 for inversion.

Initial value of DI4, DI5 and DI6 are "1". The following chart shows polarity of each signal at the initial value. Please set change of VSYNC, HSYNC and display data at the rising edge of CLK.



Polarity of each signal can be changed independently by logic of DI4, DI5 and DI6.


Example 1: DI4=0,DI5=DI6=1 (HSYNC has positive polarity and Hi active)

Example 2: DI4=1,DI5=0,DI6=1 (VSYNC has positive polarity and Hi active)

Example 3: DI4=DI5=1,DI6=0 (CLK is reversed, data is read at the rising edge of CLK.)

(11) Function Set 3, 4 (FUNC 3, 4)

- Gamma Curve Correction Select

DI5=0 of FUNC 4 Register: Deactivate user configurable gamma correction circuitry.

Use built-in gamma curve.

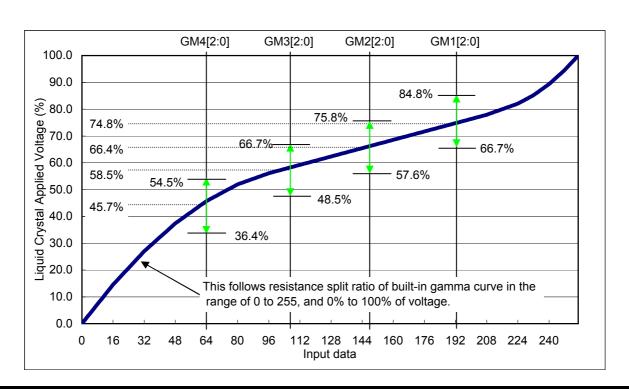
DI5=1 of FUNC 4 Register: Activate user configurable gamma correction circuitry.

Use user configurable gamma correction curve.

- Setting Method of User Configurable Gamma Correction Curve

Gamma curve can be corrected by using GM1[2:0] thru GM4[2:0] registers of FUNC 3 and FUNC 4. GM1 thru GM4 corrects each following gamma potential respectively.

GM1[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 192(=C0h)


GM2[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 148(=94h)

GM3[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 108(=6Ch)

GM4[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 64(=40h)

Below chart shows characteristic curve of gray scale input data - liquid crystal applied voltage. Input value of "0" is assumed to be 0% of applied voltage to liquid crystal, and input value of "225" is assumed to be 100% of applied voltage to liquid crystal. Adjustable range of GM1 thru GM4 registers are described below.

	GM4[2:0]	GM3[2:0]	GM2[2:0]	GM1[2:0]
00h	No correction	No correction	No correction	No correction
01h	54.5%	66.7%	75.8%	84.8%
02h	51.5%	63.6%	72.7%	81.8%
03h	48.5%	60.6%	69.7%	78.8%
04h	45.5%	57.6%	66.7%	75.6%
05h	42.4%	54.5%	63.6%	72.7%
06h	39.4%	51.5%	60.6%	69.7%
07h	36.4%	48.5%	57.6%	66.7%

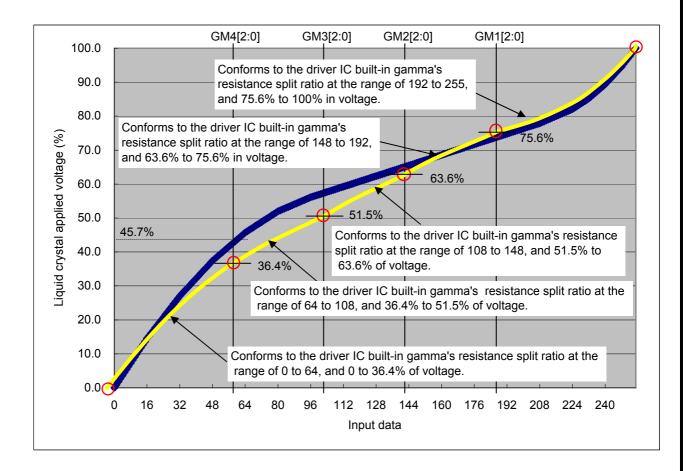
When no correction is made to gamma potential of GM1 to GM4;

The voltages at "0" and "255" are fixed in accordance with the contrast and brightness settings,

and voltages at 1 to 254 are determined by resister split ratio produced by the driver IC built-in gamma curve resister. (Refer to the chart in previous page)

Liquid crystal applied voltage takes the values of 45.7%, 58.5%, 66.4% and 74,8% when input date is 64, 108, 148 and 192 respectively.

When correction is made to any of GM1 to GM4 by user;


The voltage is corrected in accordance with a correction point and its set value configured by user.

The voltages at 1 to 254 are determined by resister split ratio between voltage at 0 and 225 and input data.

Example:

Darken gray scale in black side.

- → Change liquid crystal applied voltage at the 64 point to darken side.
- $\rightarrow \;$ Set GM4[2:0] to 7h, GM3[2:0] to 6h, GM2[2:0] to 5h and GM1[2:0] to 4h.

(12) Panel Select 4 (PANEL 4)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 4 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(13) Panel Select 5 (PANEL 5)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 5 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	1	0	0	0	0	0	0

(14) Panel Select 6 (PANEL 6)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 6 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(15) Panel Select 7 (PANEL 7)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 7 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(16) Panel Select 8 (PANEL 8)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 8 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(17) Panel Select 9 (PANEL 9)

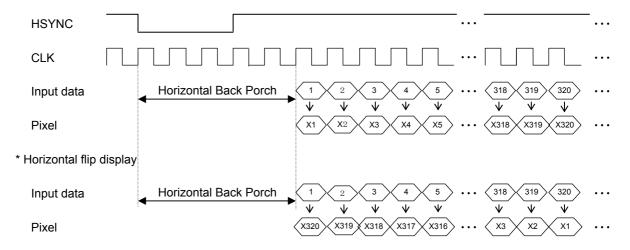
Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 9 register. Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	1	0

SPECIFICATIONS No.14TLM121

Issue: Dec. 12, 2016

8.3 Display Data Transfer

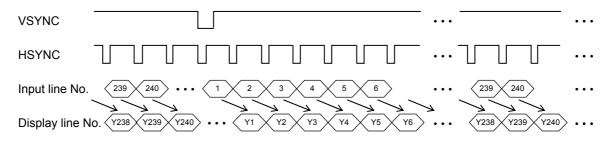

Input display data to D[27:20],D[17:10],D[07:00]. D*0:LSB, D*7:MSB

- Horizontal Timing and Order of Input Data

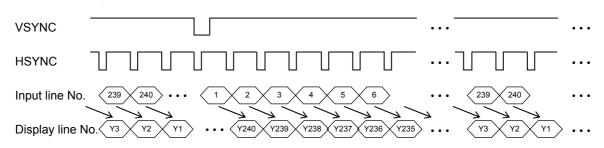
Display data shall be input in synchronization with CLK.

Polarity of CLK can be selected by DI16 of FUNCTION SET 2 (FUNC2).(at "MODE" = "VSS")

Normal display: Normal display is defined as the orientation that the FPC cable on the TFT monitor is placed on the downside.


^{*} Above timing chart shows correlation between input data and pixels in visual way and it is not actual timing chart.

- Vertical Timing and Order of Input Data


Transfer of display data that consist of 240 lines in 1 field is explained below.

The correlations between input line and display line at normal display and vertical flip display are described below.

Normal display: Normal display is defined as the orientation that the FPC cable on the TFT monitor is placed on the downside.

* Vertical flip display

^{*} Above timing chart shows correlation between input data and pixels in visual way and it is not actual timing chart.

8.4 Standby (Power Save) Sequence

When "MODE" = "VSS", serial communication signals of CS, DI and SCK shall be input after VDD stabilizes at VDD ≥[0.9×VDD]V for more than 20 msec or more after power on.

All initial values of serial data shall be set during this standby mode.

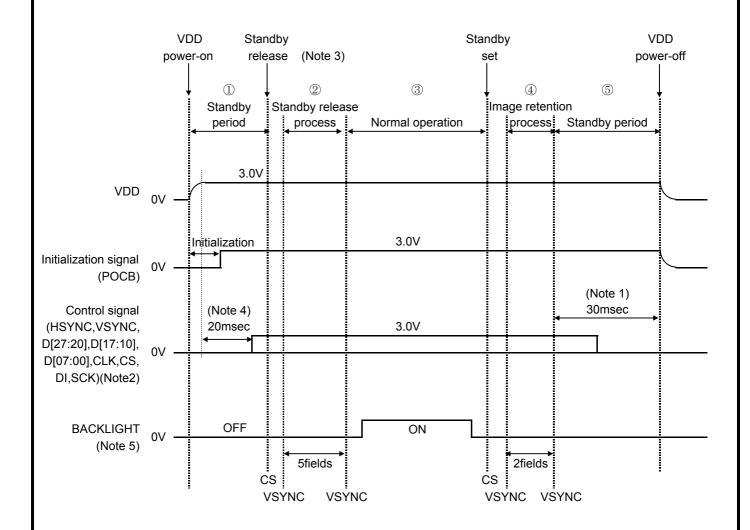
Other logic input signals of HSYNC,VSYNC,D[27:20],D[17:10],D[07:00] and CLK shall be input simultaneously after power on (specified period marked ① in next page). All input signals shall be set to a fixed DC to reduce power consumption during standby mode.

Please follow the recommended power on/off sequence described below.

 $\ensuremath{\textcircled{1}}$ Right after power on, serial communication registers are initialized.

Therefore, standby control bit takes the value of "0".

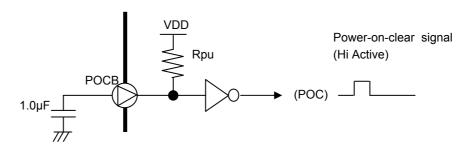
By this procedure the LCD goes into standby mode which significantly reduces power consumption of the LCD. No image is displayed (white raster display) on the screen and internal power circuit is deactivated during standby mode.


Sync signal and display data (HSYNC,VSYNC,D[27:20],D[17:10],D[07:00],CLK) start to input before standby mode is released by serial communication.

- ② When the standby control bit is set to "1" by serial communication or the terminal "STBY" turn to "Lo" from "Hi", the standby mode is released by following VSYNC and the power supply circuit of building into begins operating. No image is displayed (white raster display) on the screen for 5 fields from the following VSYNC after the release of standby mode.
- ③ LCD goes into normal display (display under normal operation) at the timing of VSYNC after completion of the procedure described in ②. Backlight shall be lit up 1 or more field after going to normal display.
- ④ Standby mode can be established by setting standby control bit to "0" by serial communication or the terminal "STBY" turn to "Hi" from "Lo". Display data is changed to FFh at VSYNC that comes right after this serial communication, and afterimage treatment is performed for 2 fields of VSYNC. Displayed image under normal display is immediately changed to white raster display by this treatment. Continue to input sync signal (HSYNC,VSYNC,CLK) during this period.
- ⑤ LCD goes into standby mode, which is same as ① above, at the timing of VSYNC after completion of the procedure described in ④. Serial communication data is retained during standby mode. Serial communication signal and input signal can be deactivated.
 - 2 to 4 repeats same procedures as described above.

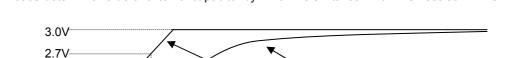
Below procedure must be followed for power-off.

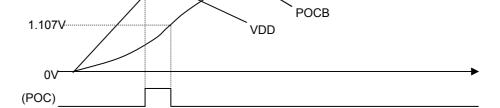
- ① Implement standby setting.
- ② After standby setting, continue to input sync signals (HSYNC, VSYNC, CLK) during the image treatment period (until VSYNC after 2 fields subsequent to standby setting).
- ③ After ②, power off VDD after 30msec or more.
- 4 Stop the sync signals (HSYNC, VSYNC, CLK) subsequent to afterimage treatment period and no later than VDD off.

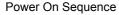

- Note 1: Power off VDD more than 30 msec after VSYNC that arrives 2 fields from standby set.
- Note 2: Input CLK during the period of inputting sync signals (HSYNC, VSYNC) and display data D[27:20],D[17:10],D[07:00].
- Note 3: Due consideration needs to be given to power supply capacity as bigger current (inrush current) flows at standby release.
- Note 4: Serial communication signals should be input after VDD stabilizes at VDD ≧[0.9×VDD]V for more than 20 msec. And initial values of all serial data should be set during this period before standby release.
- Note 5: Backlight should be turned on after 5 field from starting display. Backlight should be turned off before standby is set.

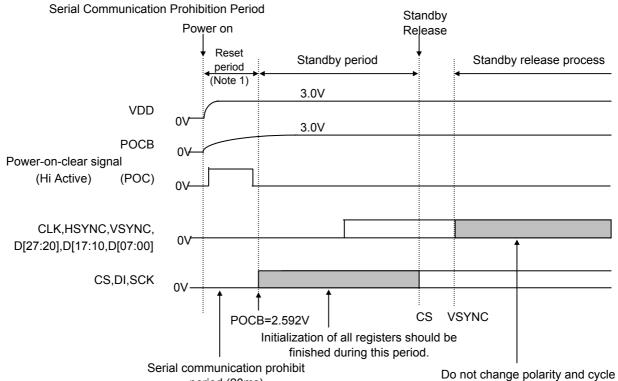
Voltage values shown in this chart are typical values, not fixed values.

8.5 Power On Sequence


There is the following limit between a power on period and the serial communication setting.


Power-on-clear circuit diagram



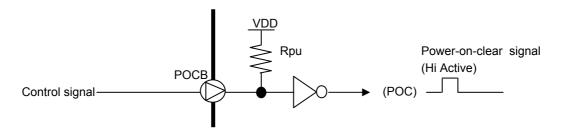

POCB terminal is connected to VDD through the pull-up resistor (Rpu).

When rising of VDD takes long time, POCB will have unstable and unpredictable waveform. Please determine value of external capacitor by which POCB takes 1.107 V or less at VDD is 2.7V.

Note 1: All logic input signals are ignored during input period (POC is Hi).

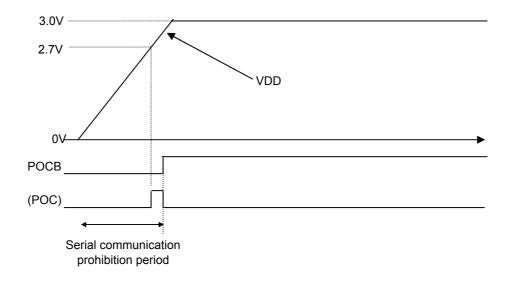
period.(20ms)

Note2

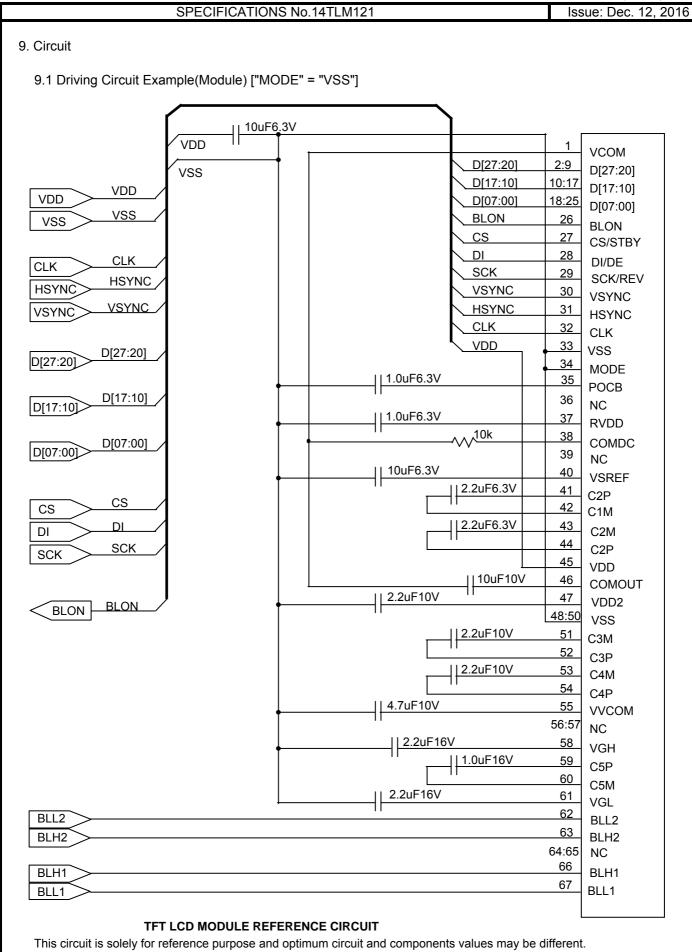

Note 2: Serial communication signals shall be input after VDD stabilizes at VDD ≧[0.9×VDD]V for more than 20 msec or more after power on.

of CLK, HSYNC and VSYNK.

ORTUS TECHNOLOGY CO.,LTD.

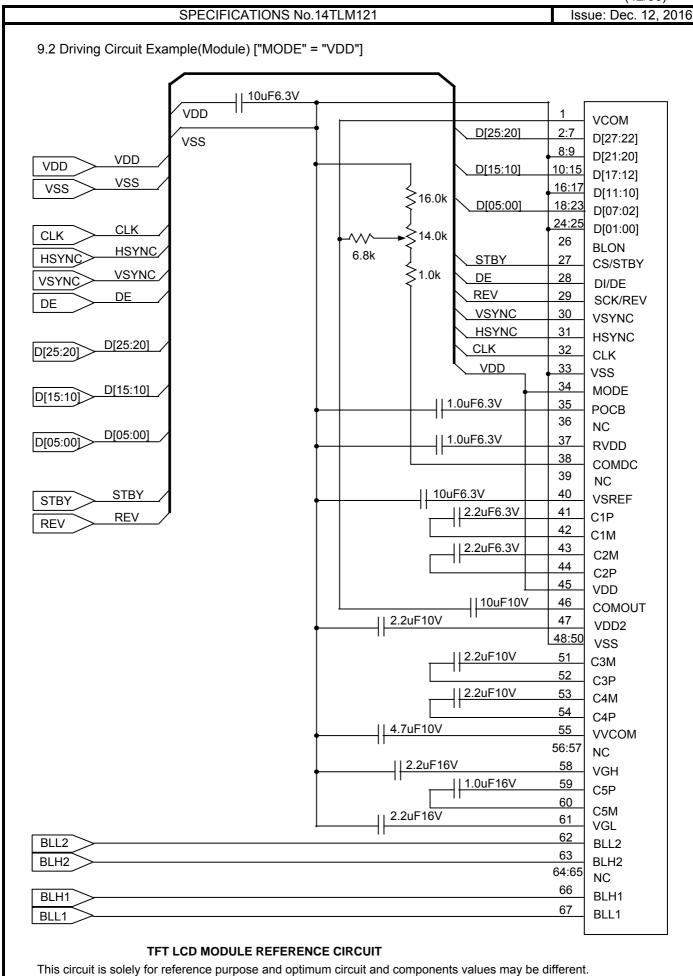

In case of rapid startup after power-on, directly control POCB terminal.

Power-on-clear circuit diagram



In case of directly controlling POCB terminal, POCB terminal should be set to "Lo" at Power-on POCB should be changed to "Hi" after VDD is exceeding 2.7V.

Serial communication is prohibited while POCB is "Lo".



SPECIFICATIONS No.14TLM121	Issue: Dec. 12, 2016					
8.6 Other Functions						
 Built-in Panel Residual Charge Reduction Circuit When the power turns off in accordance with the mandatory procedure described in the section "8.4 Standby (Power save) Sequence", afterimage treatment is carried out after standby mode is set. This circuit automatically reduces panel's residual charge and prevents afterimage for a long time even if standby mode setting fails to be made before power-off. 						
ORTUS TECHNOLOGY CO.,LTD.						

User's due consideration and evaluation must be given to this circuit design and component values prior to their intended use.

ORTUS TECHNOLOGY CO.,LTD.

ORTUS TECHNOLOGY CO.,LTD.

User's due consideration and evaluation must be given to this circuit design and component

values prior to their intended use.

(43/56)

SPECIFICATIONS No.14TLM121 Issue: Dec. 12, 2016 9.3 LED Circuit BLH1 O M BLL1 ()——— BLH2 O **/** BLL2 O ORTUS TECHNOLOGY CO.,LTD.

SPECIFICATIONS No.14TLM121

10. Characteristics

10.1 Optical Characteristics

< Measurement Condition >

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS) ,

EZcontrast160D (ELDIM)

Driving condition: VDD = 3.0V,VSS=0V

Optimized VCOMDC

Backlight: IL=7.1mA Measured temperature: Ta=25° C

	Item	Symbol	Condition	MIN	TYP	MAX	Unit	Note No.	Remark
onse	Rise time	TON	[Data]= FFh→00h	_		40	ms	1	*
Response time	Fall time	TOFF	[Data]= 00h→FFh	_		60	ms		
Contrast ratio	Backlight ON	CR	[Data]= FFh/00h	240	400	I		2	
Con	Backlight OFF			_	12.0	_			
	Left	θL	[Data]=	80	_		deg	3	*
Viewing angle	Right	θR	FFh/00h	80		1	deg		
/ie/	Up	φU	CR≧10	80		1	deg		
	Down	φD		80			deg		
White	e Chromaticity	Х	[Data]=FFh	White ch	romaticit	y range		4	
vviiico	Officialities	У							
Burn-in			be obse	eable bui rved after pattern d	2 hours		5		
Cente	Center brightness		[Data]=FFh	315	450	_	cd/m ²	6	
Brigh	tness distribution	on	[Data]=FFh	70		_	%	7	

^{*} Note number 1 to 7: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics".

^{*} Measured in the form of LCD module.

SPECIFICATIONS No.14TLM121

0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

[White Chromaticity Range]

Х	У
0.25	0.34
0.25	0.27
0.27	0.26
0.33	0.26
0.35	0.28
0.35	0.35
0.34	0.37
0.27	0.37

White Chromaticity Range

10.2 Temperature Characteristics

< Measurement Condition >

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS)

Driving condition: VDD = 3.0V,VSS=0V

Optimized VCOMDC

Backlight: IL=7.1mA

	ltem		Specif	ication	Remark
'			Ta=-20° C	Ta=70° C	Keillaik
Contrast ratio		CR	40 or more	40 or more	Backlight ON
Response time	Rise time	TON	200 msec or less	30 msec or less	*
response time	Fall time	TOFF	300 msec or less	50 msec or less	*
Display Quality			No noticeable display d should be observed.	lefect or ununiformity	Use the criteria for judgment specified in the section 11.

^{*} Measured in the form of LCD module.

SPECIFICATIONS No.14TLM121

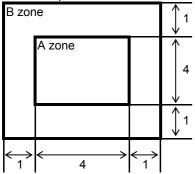
11. Criteria of Judgment

11.1 Defective Display and Screen Quality

Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions

Driving Signal Raster Patter (RGB, white, black)
Signal condition [Data]:FFh, A0h, 00h (3 steps)

Observation distance 30 cm
Illuminance 200 to 350 lx
Backlight IL=7.1mA


Defect item			Defect content	Criteria
	Line defect	Black, white or colo	r line, 3 or more neighboring defective dots	Not exists
_		Uneven brightness	on dot-by-dot base due to defective	Refer to table 1
alit		TFT or CF, or dust i	s counted as dot defect	
g		(brighter dot, darker	dot)	
lay	Dot defect	High bright dot: Visi	ble through 2% ND filter at [Data]=00h	
Display Quality		Low bright dot: Visi	ble through 5% ND filter at [Data]=00h	
		Dark dot: Appear da	ark through white display at [Data]=A0h	
		Invisible through 5%	ND filter at [Data]=00h	Ignored
	Dirt	Uneven brightness	(white stain, black stain etc)	Invisible through 1% ND filter
_		Point-like	0.25mm< φ	N=0
Quality	Foreign		0.20mm< φ ≦0.25mm	N≦2
g	Foreign particle		φ ≦0.20mm	Ignored
en	particic	Liner	3.0mm <length 0.08mm<width<="" and="" td=""><td>N=0</td></length>	N=0
Screen			length≦3.0mm or width≦0.08mm	Ignored
0)	Others			Use boundary sample
	Outers			for judgment when necessary

 ϕ (mm): Average diameter = (major axis + minor axis)/2 Permissible number: N

Table 1

Area	High bright dot	Low bright dot	Dark dot	Total	Criteria
Α	0	2	2	3	Permissible distance between same color bright dots (includes neighboring dots): 3 mm or more
В	2	4	4	6	Permissible distance between same color high bright dots (includes neighboring dots): 5 mm or more
Total	2	4	4	7	

<Landscape model>

Division of A and B areas

B area: Active area

Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)

SPECIFICATIONS No.14TLM121

11.2 Screen and Other Appearance

Testing conditions

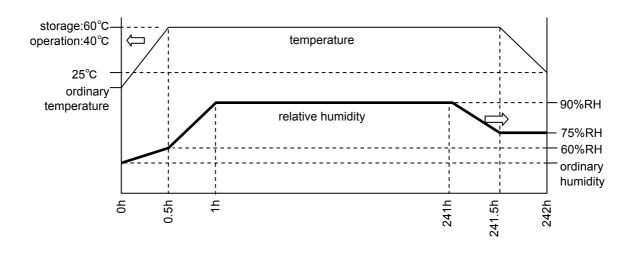
Observation distance 30cm

Illuminance 1200~2000 lx

	Item	Criteria	Remark
	Flaw	Ignore invisible defect when the backlight is on.	Applicable area:
zer	Stain		Active area only
Polarizer	Bubble		(Refer to the section
P 9	Dust		3.2 "Outward form")
	Dent		
	S-case	No functional defect occurs	
	FPC cable	No functional defect occurs	

ORTUS TECHNOLOGY CO.,LTD.

SPECIFICATIONS No.14TLM121


Issue: Dec. 12, 2016

12. Reliability Test

	Test item	Test condition	number of failures
	High temperature storage	Ta=80° C 240hr	/number of examinations 0/3
	Low temperature storage	Ta=-30° C 240hr	0/3
+,	High temperature & high	Ta=60°C, RH=90% 240hr	0/3
tes	humidity storage	non condensing ×	0/ 0
Durability test	High temperature operation	Tp=70° C 240hr	0/3
rab	Low temperature operation	Tp=-20° C 240hr	0/3
Dul	·	Tp=40°C, RH=90% 240hr	0/3
	High temp & humid operation	non condensing ×	0 , 0
	Thermal shock storage	-30←→80° C(30min/30min) 100 cycles	0/3
	· · · · · · · · · · · · · · · · · · ·	Confirms to EIAJ ED-4701/300	0/3
	Electrostatic discharge test	C=200pF,R=0Ω,V=±200V	
	(Non operation)	Each 3 times of discharge on and power supply	
		and other terminals.	
		C=250pF, R=100Ω, V=±12kV	0/3
sst	Surface discharge test	Each 5 times of discharge in both polarities	
l te	(Non operation)	on the center of screen with the case grounded.	
Mechanical environmental test		Pull the FPC with the force of 3N for 10 sec.	0/3
) H	FPC tension test	in the direction - 90-degree to its	
Ē		original direction.	
env		Pull the FPC with the force of 3N for 10 sec.	0/3
g	FPC bend test	in the direction -180-degree to its	
ani		original direction. Reciprocate it 3 times.	
Sch	Vibration test	Total amplitude 1.5mm, f=10~55Hz, X,Y,Z	0/3
ž	Vibration test	directions for each 2 hours	
		Use ORTUS TECHNOLOGY original jig (see next	0/3
		page) and make an impact with peak acceleration	
	Impact test	of 1000m/s ² for 6 msec with half sine-curve at	
		3 times to each X, Y, Z directions in	
		conformance with JIS 60068-2-27-2011.	
st		Acceleration of 19.6m/s ² with frequency of	0 ∕ 1 Packing
g te	Packing vibration-proof test	10→55→10Hz, X,Y, Zdirection for each	
Packing test		30 minutes	
	Packing drop test	Drop from 75cm high.	0 ∕ 1 Packing
		1 time to each 6 surfaces, 3 edges, 1 corner	

Note:Ta=ambient temperature Tp=Panel temperature

X The profile of high temperature/humidity storage and High Temperature/humidity operation (Pure water of over 10M Ω ·cm shall be used.)

ORTUS TECHNOLOGY CO.,LTD.

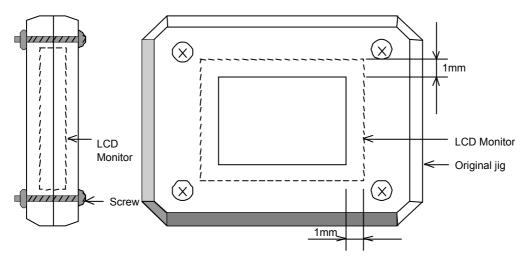
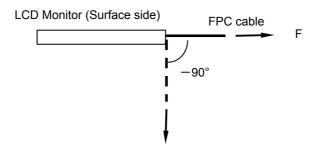
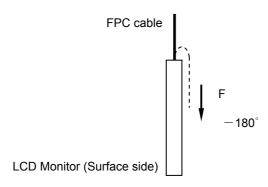
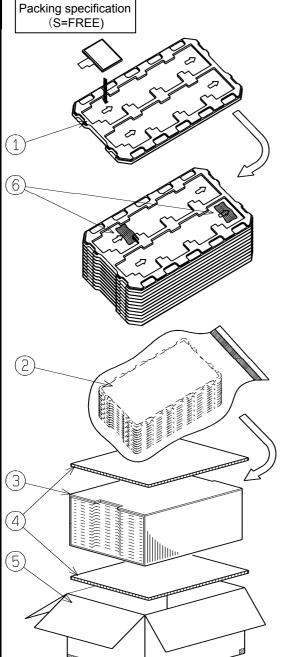

SPECIFICATIONS No.14TLM121

Table2.Reliability Criteria


Measure the parameters after leaving the monitor at the ordinary temperature for 24 hours or more after the test completion.

item	Standard	Remarks
Display quality	No visible abnormality shall be seen.	As criteria of
		"11 Criteria of Judgment".
Contrast ratio	40 or more	Backlight ON


ORTUS TECHNOLOGY Original Jig


Tension Test Method for FPC cable

Bend Test Method for FPC cable

13. Packing Specifications

(8 products per tray) Step 2. Each tray needs to be same orientation respect to the tray

below or above it and the trays be in a stack of 10. One empty tray is to be put on the top of stack of 10 trays.

Step 1. Each product is to be placed in one of the cut-outs of the tray with the display surface facing downward.

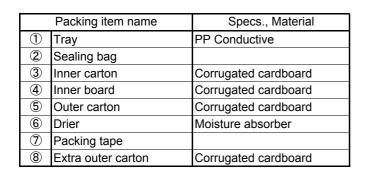
2 packs of moisture absorbers are to be placed on the top tray as shown in the drawing. Put piled travs into a sealing bag. Vacuum and seal the sealing bag with the vacuum sealing

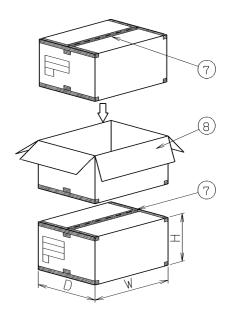
The stack of trays in the plastic back is to be inserted into a Step 4. inner carton.

A corrugated board is to be placed on the top and on the Step 5. bottom of the inner carton. The two corrugated boards and the inner carton is to be inserted into an outer carton.

The outer carton needs to sealed with packing tape as Step 6. shown in the drawing. The model number, quantity of products, and shipping date

are to be printed on the outer carton.


If necessary, shipping labels or impression markings are to be put on the outer carton.


The outer carton is to be inserted into a extra outer carton Step 7. with same direction.

The extra outer carton needs to sealed with packing tape as shown in the drawing.

The model number, quantity of products, and shipping date Step 8. are to be printed on the extra outer carton. If necessary, shipping labels or impression markings are to be put on the extra outer carton.

Dimension of extra outer carton				
D : Approx. (338mm)				
W : Approx.	(549mm)			
H : Approx.	(198mm)			
Quantity of products	8pcs×10=80pcs			
packed in one carton:	opc3^10=00pc3			
Gross weight : Approx.	8.4kg			

14. Handling Instruction

14.1 Cautions for Handling LCD panels

Caution

- (1) Do not make an impact on the LCD panel glass because it may break and you may get injured from it.
- (2) If the glass breaks, do not touch it with bare hands.
 (Fragment of broken glass may stick you or you cut yourself on it.
- (3) If you get injured, receive adequate first aid and consult a medial doctor.
- (4) Do not let liquid crystal get into your mouth.
 (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.
- (5) If liquid crystal adheres, rinse it out thoroughly.
 (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.
- (6) If you scrap this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.
- (7) Do not connect or disconnect this product while its application products is powered on.
- (8) Do not attempt to disassemble or modify this product as it is precision component.
- (9) If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition.
- (10) Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnormal operation is generated. We recommend you to add excess current protection circuit to power supply.

Caution

This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.

SPECIFICATIONS No.14TLM121

14.2 Precautions for Handling

 Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.

Do not touch the surface of the monitor as it is easily scratched.

Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge,

Properly set up equipment, jigs and machines, and keep working area clean and tidy for handling the TFT monitors.

- Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- 6) Do not stain or damage the contacts of the FPC cable . FPC cable needs to be inserted until it can reach to the end of connector slot. During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion. Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.
- 7) Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.
- 8) Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

- 1) Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.
- 2) In case of powering up or powering off this LCD module, be sure to comply the sequence as instructed in this specification.
- Optimize VCOMDC within recommended operating conditions.
 * When VCOMDC is not an optimal value, flicker and image sticking will be occurred.
- 4) Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off.
- 5) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- 6) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

SPECIFICATIONS No.14TLM121

14.4 Storage Condition for Shipping Cartons

Storage environment

Temperature 0 to 40°C
 Humidity 60%RH or less

No-condensing occurs under low temperature with high humidity condition.

Atmosphere No poisonous gas that can erode electronic components and/or wiring

materials should be detected.

Time period 3 months

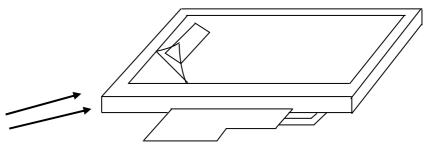
Unpacking
 To protect the TFT monitors from static damage during unpacking, keep room

humidity more than 50%RH and implement effective countermeasures against static electricity such as establishing a ground (an earth) before unpacking.

Maximum piling up 7 cartons

14.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.


A) Work Environment

- a) Humidity: 50 to 70 %RH, Temperature15 to 27 °C
- b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Anti-static treatment should be implemented to work area's floor.
- c) Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.

B) Work Method

The following procedures should taken to prevent the driver ICs from charging and discharging.

- a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower left when the FPC cable is facing to the downside.
 Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
- b) Put an adhesive tape (Scotch tape, etc) at the lower left corner area of the protective film to prevent scratch on surface of TFT monitors.
- c) Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction.

Direction of blowing air

(Optimize air direction and the distance)

SPECIFICATIONS No.14TLM121

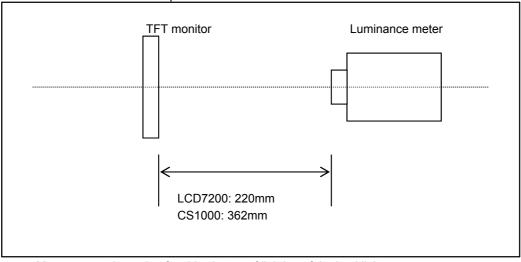
APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

1. Measurement Condition (Backlight ON)

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS) ,EZcontrast160D (ELDIM)

Driving condition: Refer to the section "Optical Characteristics"

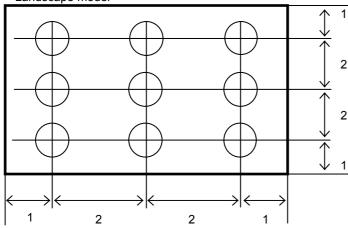

Measured temperature: 25°C unless specified

Measurement system: See the chart below. The luminance meter is placed on the normal line of

measurement system.

Measurement point: At the center of the screen unless otherwise specified

Dark box at constant temperature



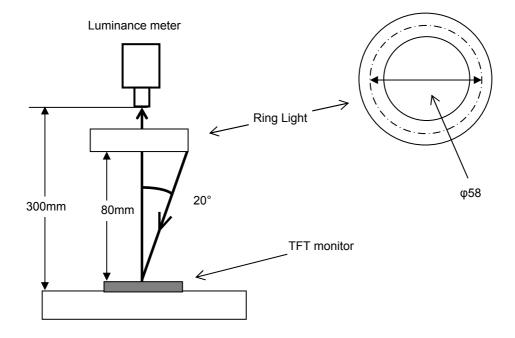
Measurement is made after 30 minutes of lighting of the backlight.

Measurement point: At the center point of the screen

Brightness distribution: 9 points shown in the following drawing.

<Landscape model>

Dimensional ratio of active area


Backlight IL=7.1mA

Measurement Condition (Contrast ratio Backlight OFF only)

Measuring instruments: LCD7200(OTSUKA ELECTRONICS),Ring Light(40,000 lx,φ58)

Driving condition: Refer to the section "Optical Characteristics"

Measurement system: 25°C unless specified
Measurement system: See the chart below.
Measurement point: At the center of the screen.

SPECIFICATIONS No.14TLM121 Issue: Dec. 12, 2016

2 Test Method

Notice	Item	Test method	Measuring instrument	Remark
1	Response time	Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white.	LCD7200	Black display [Data]=00h White display [Data]=FFh
		White Black White		TON Rise time
		White 100%		TOFF Fall time
		90%		
		10% 0% Black TON TOFF		
2	Contrast ratio	Measure maximum luminance Y1([Data]=FFh) and minimum luminance Y2([Data]=00h) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 8mmφ(CS1000) Diameter of measuring point: 3mmφ(LCD7200)	CS1000 LCD7200	Backlight ON Backlight OFF
3	Viewing angle Horizontalθ Verticalφ	Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is 10.	EZcontrast160D	
4	White chromatically	Measure chromaticity coordinates x and y of CIE1931 colorimetric system at [Data] = FFh Color matching faction: 2°view	CS1000	
5	Burn-in	Visually check burn-in image on the screen after 2 hours of "window display" ([Data]=FFh/00h).		At optimized VCOMDC
6	Center brightness	Measure the brightness at the center of the screen.	CS1000	
7	Brightness distribution	(Brightness distribution) = 100 x B/A % A : max. brightness of the 9 points B : min. brightness of the 9 points	CS1000	

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Lechwiesenstr. 9 86899 Landsberg am Lech

 Phone:
 +49 8191 91172-0

 E-Mail:
 sales@fortecag.de

 Internet:
 www.fortecag.de

Fortec Group Members

Austria

FORTEC Elektronik AG

Office Vienna

Nuschinggasse 12 1230 Wien

 Phone:
 +43 1 8673492-0

 E-Mail:
 office@fortec.at

 Internet:
 www.fortec.at

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: <u>info@displaytechnology.co.uk</u> Internet: <u>www. displaytechnology.co.uk</u>

USA

APOLLO DISPLAY TECHNOLOGIES

A FORTEC GROUP MEMBER

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: +1 631 5804360
E-Mail: info@apollodisplays.com
Internet: www.apollodisplays.com